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ABSTRACT

A Galerkin method for systems of PDE’s in circular geometries is presented with motivating
problems being drawn from structural, acoustic and structural acoustic applications. Depend-
ing upon the application under consideration, piecewise splines or Legendre polynomials are
used when approximating the system dynamics with modifications included to incorporate
the analytic solution decay near the coordinate singularity. This provides an efficient method
which retains its accuracy throughout the circular domain without degradation at the singu-
larity. Because the problems under consideration are linear or weakly nonlinear with constant
or piecewise constant coeflicients, transform methods for the problems are not investigated.
While the specific method is developed for the 2-D wave equation on a circular domain and the
equation of transverse motion for a thin circular plate, examples demonstrating the extension of
the techniques to a fully coupled structural acoustic system are used to illustrate the flexibility
of the method when approximating the dynamics of more complex systems.
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1 Introduction

A common step in many structural, aconstic and fluid applications involves the solution of par-
tial differential equations (PDE’s) modeling the physies of a system having a circular geometry.
Examples of applications in which this is important inclnde the determination and control of
circular plate and evlindrical shell dynamics. the modeling and attenuation of noise within a
cvlindrical cavity, the simalation of fluid flow and boundary laver erowth in a pipe. as well
as inmmerable other applications involving cirenlar domains. Due to the complexity of the
problems. however, analytic solutions nsnally cannot be obtained and one must numerically
approximate the dynamics nnder consideration.

From separation of variables and truncation of the resulting infinite series. approximations
i the form of modal expansions involving Bessel components can occasionally he nsed to
approximate PDE dynamics. However. modal expansions can be determined for only a limited
nimber of applications and henee one must often employ more general technigues sich as finite
difference. finite element, spline, or spectral expansions in order to approximate the dynamics
of the system nnder consideration.

In the category of speetral methods for circular geometries, Galerkin. collocation and tau
methods have been studied with the choice of method depending upon the problem being con-
sidered. To date. much of this rescarch has centered aronnd the simulation of {liid flow and
homndary layer growth and in these cases. emphasis has usnally been placed on collocation due
its suceess i handling complex boundary conditions, variable coefficients, and strong nonlin-
carities [16. 17]. Galerkin methods for flows on spheres are discussed in [15]. but this is done
primarily in the context of Fourier expansions involving the strong form of the modeling flow
cquations with only a brief discussion concerning Legendre bases being included. As noted in
this Tatter reference. care must be exercised when applying any of the previously mentioned
techniques (Galerking collocation or tau) 1o problems with coordinate singularitics sinee the
incorrect application of pole conditions can significantly degrade the accuracy of the method
as well as introduce strong mumerical instabilities. This reference also includes a general com-
parison hetween the results obtained with surface harmonies (eigenfunctions of the Laplacian),
modified Robert functions and Fourier series using collocation and Galerkin methods in the
presence of the coordinate singularity. The use of the modified Robert functions and tech-
nigues for improving their conditioning and emploving fast transforms is further addressed in
[10]. Finally, general overviews concerning the application of spectral methods to problems
with coordinate singnlarities can be found in [11. 12]. We point ont that the emphasis in these
references centers primarily aronnd the development of numerical methods for flows of varions
types and henee the techniques are often geared toward the approximation of strongly nonlinear
operators which requires transform methods to facilitate eflicient implementation. While these
technigues will clearly work for linear problems involving cirenlar domains, they often are not
optimal nor the best choice for the applications nnder consideration.

In this paper. we present a Galerkin method for linear or weakly nonlinear problems having
circular or eylindrical domains nsing piccewise spline and spectral bases. Two arcas from which
we will draw examples are structural dyvnamies and aconstics (a search of the literature reveals
few mumerical techniques for these types of problems on civenlar domains).  Linearization in

the first case is often justified when dealing with small amplitude vibrations while linearized



acoustic equations are often employed when considering acoustic fields having sound pressure
levels less than 150 dB (which is the case in a large number of acoustic and structural acoustie
applications). While weak nonlinearities of the type considered in [7] can also be efficiently
implemented, the discussion here will concentrate on the linear case. Moreover, the coeflicients
in the problems of interest will be taken to be constant or piecewise constant in nature (this is
certainly a reasonable assumption for many acoustic problems and a valid condition in a large
class of structural applications). Hence we will not address the use of transform methods for
evaluating variable coefficients and noulinear components.

Throughout the discussion, the modeling equations will be approximated in the weak or
variational form in accordance with energy formulations of the problems. In the structural
application, this is done to reduce smoothness requirements on approximating elements and
to accommodate structural and material discontinnities as well as unbounded (discontinuous)
input operators. The consideration of the acoustic problem in weak form proves to he usefnl
when considering coupled structural acoustic systems. Moreover, in weak form. some physical
boundary conditions (e.g., the hard wall conditions which we consider here) are natural which
implies that no basis alterations are necessary when implementing the method. We point out,
however, that if the application warrants, approximation of the acoustic dynamics using the
strong form of the system equations can just as efficiently be accomplished using the techuigues
of the paper. Moreover, these techniques can be easily modified to accommodate a tau method
if dealing with more complex essential boundary conditions (boundary conditions which must
be explicitly satisfied in a variational formulation of the problem).

In the second section of this paper, a 2-1) acoustic problem on a circular domain is con-
sidered with a Fourier-Legendre basis being used in the ensuing approximations. In addition
to its accuracy, the use of this basis proves to be advantageous in control applications since it
facilitates the maintenance of uniform stability margins under approximation [1]. Moreover,
the the use of the spectral basis facilitates approximation in a quotient space which is often the
natural state space in acoustic problems.

The techniques are then applied to a structural application in Section 3 with the problem
of approximating circular plate dynamics being used to motivate the analysis. In this case,
cubic splines modified to satisfy boundary conditions are used in conjunction with a Fourier
basis to obtain a suitable finite-dimensional approximation to the problem. The use of splines
rather than a spectral basis is motivated by smoothness requirements as well as the case with
which they can be adapted to satisfy essential bonndary conditions, and can easily be changed
if warranted by the form of the modeling equations and boundary conditions. We emphasize
that when developing a general technique that could be applied in both cases, care was taken to
treat the coordinate singularity in a manner that prevented degradation of accuracy nsing cither
basis (spectral or piecewise splines) as well as avoided the introdnetion of spirions numerical
instabilities.

The techniques from Sections 2 and 3 are then combined in Section 4 where the problem of
approximating the dynamics of a fully coupled structural acoustic system is considered. This
demonstrates the flexibility of the method when studying a more complex coupled physical
system and illustrates the manner through which the basic techniques can be extended to more
general problems. The convergence properties of the method and its use in determining physical
properties of the system are illustrated through a set of examples. Finally, advantages of the
method in control applications are discussed in the concluding remarks.



2 The Wave Equation

In this section we consider the 2-1D wave equation on a circular domain €2 of radins « with the
boundary denoted by I'. For Neumann boundary constraints and initial conditions ¢g and .

the equations of motion are
i = A+ gltr,0) .o (r0)ye t>0,
Vo-1r=10 . (r0)el (>0,

o(0,7,0) = do(r.0) . (r.0) € Q.
o0,0.0) = (. 0) . (r.0)€Q

where ¢, in acoustics applications [14], denotes the velocity potential and ¢ is the speed of
sound. We note that the Neumann boundary conditions are chosen so as to be consistent with
the hard wall conditions in the physical application described in Section 4 and can be altered
to fit the individual problems under investigation.

To gain insight into the hehavior of the solution and to motivate the form of the approx-
imation, we first solve the equations analytically through a standard separation of variables.
For the homogencous problem (¢ = 0), we take ¢(t,r,0) = T(1)®(r,0) to arrive at the two
dimensional Helmholz equation

Ab4+ 420 =0 . (r,0)€ 2.

Vo.7 =10 , (r.0)el
and the relation T" + w1 =0, t > 0. The separation constant here is =% = —(£)* where w
is the cirenlar frequency with nnits of radians/sec. To find @, we separate variables once more.
Letting ®(r. ) = R(r)O(0), the expansion of Helmholz's equation yields the expression

| ‘(IH N 1?0 A2
1 dr ' dr 720 6 =

which implies that B and © must satisfy the differential equations
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0"+ m?O =0
0(0) = 02r) .

The general solution to (2.4) is periodie and is given by O(8) = Aje™ . m =0, +1,£2,- -+ .
Morcover, the general solution of the Bessel eqnation (2.3) is R(r) = Ayl (yr) + AsY.(771)
where 1, and Y, are the m!" Bessel functions of the first and second kind. respectively. As
noted in [1]. these functions display the asymptotic behavior
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for fixed m and z — 0. Because Y, grows unboundedly at the origin, we take Ay = 0 in order
to guarantee that the solution remains bounded at » = 0. The decay properties of L/, will be
incorporated when developing an approximation method for the problem.

The eigenvalues 4, of (2.2) are then determined by applying the boundary condition and
solving for the zeros of the nonlinear eqnation

d g, (~va)
dr

=0. (2.6)

The corresponding eigenvectors or modes are W, (7. 0) = L, (A0 ) for m = 0,41, £2.- -
T / 1 EEAT]

n = 1,2,3,--- which implies that standing waves have the form

d)mn(t r, ()) - [“n Si“(f}mn('{) + ])n (‘OS(F)'mn(lf )] ']771(71117L">( ond .

A variation of parameters approach can then be used to extend this to the nonhomogencons
case. With suitable smoothness assiumptions on the initial conditions and forcing term, it can
bhe shown that the solution to (2.1) has the form
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where the coefficients @, (1) depend on @y, ¢, and the time-dependent Fourier coefficients of
g (we refer the reader to any standard PDE text for details concerning the justification of the
formal calculations outlined here).

laving outlined the arguments leading to the analytic form of the solution. we now want to
nse those results to motivate an appropriate Galerkin technique for approximating the solution.
To facilitate the use of this scheme in coupled structural aconstic systems (see, for example.
the system discussed in Section 1), the weak form of the system equations will he considered,
Moreover, to illustrate the use of the method when approximating the acoustic potential (which
is determined to within only a constant {14]), a basis snitable for a quotient space will be chosen.

To pose the system (2.1) in weak form, we take the state to be ¢ in the space [ = L*(2)
where L2() is the quotient space of L? over the constant functions. The space of test functions

is taken to be the quotient space V= (). The inner products for the 1wo spaces are taken
to be |
(0.&), = / — obdw | (6,6),, = | Vo Vidw
Ja e Ju

(the overbars here denote complex conjugation as compared with those nsed above to delineate
the quotient spaces). Energy considerations or integration by parts then yields the variational
form
/ duldw + / V- Védw = /g/Z(lw (2.8)
Ju Ja
for all £ V.,
To discretize, we begin with a Fourier expansion in 6 which yields the approximate solution

M

oM 0) = S gty (2.9)

m=—AM



We point out that the use of the complex Fourier expansion simplifies the following discussion
both in describing the form of the approximate solution and the construction of the system
matrices.  However, when combining these wave results with those of the circular plate to
vield an approximation scheme for the coupled system (see Section 4), it is easier to use a
real Fourier expansion when performing the actual computations (this is due to the presence
of the piezoceramic patches on the plate). The interchange between the two expansions is
straightforward, and hence details concerning the implementation of the real Fourier scheme
are left to the reader.

Several possibilities exist for spline, Legendre or Chebyshev expansions of c;)m(l.r) both in
a collocation and Galerkin setting. These include direct expansions which maintain the parity
of the solution, refinements to incorporate the decay of the solution at the origin, and mapped
expansions which nse all the polynomials and yield better center resolution. These expansions

must satisfy the condition

oM
a0
at the origin which gnarantees the nniqueness of the solution. This yields the requirement
g;)m(t,r):() at r=0, m#0. (2.10)

To guarantee differentiability at the origin, it is appropriate to require that the remaining
component satisfies
Do
ar

As detailed in [6], one expansion of (,Tﬁm(t, ) which satisfies these properties is

=0  atr=0. (2.11)

’\F‘Nl

m| pmy .,
m f 7 Z émn | |[” (7)

n=0

where
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and
ry—1/3 , m=0,n=1
I)?IL(T) — !
n ) .
P.(r) . otherwise .

Here P,(r) is the n'* Legendre polynomial which has heen mapped to the interval (0,a). The
term f(r) — 1/3 when m = 0, n =1 results from the orthogonality properties of the Legendre
1 g Y proj :
polynomials and arises when enforcing the condition [, oM (¢,7,0, z)dw = 0 so as to guarantee
that the functions are suitable as a basis for the quotient space. The inclusion of the weight
rP* incorporates the decay of the analytic solution near the origin (see (2.5)) while ensuring
its uniqueness at that point. Finally, we note that if N Legendre functions are nsed, the limit
N™ 1s given by N = N + 1 when |m| # 0 and N = N when m = 0, which implies that
M =(2M + 1)(N™ 4+ 1) — 1 basis functions are used in the wave expansion.
Summarizing. the approximate solution to (2.8) can be expressed as

M N
oM 0)= Y N punl )P ()™ Z@k M(r.0) (2.13)
m=-7A n=1



where BM(r,0) = r™ P (r)e"™?. In comparing the form of this approximate solution with the
analytic wave solution defined in (2.7), it can be seen that we have essentially replaced the Bessel
components by weighted Legendre functions. This provides an approximate solution which is
more flexible and is quicker to converge in a variety of applications than that obtained with a
purely eigenfunction expansion (indeed, for more complex systems involving wave components,
the eigenfunctions are unavailable and would have to be approximated before they could be
used as a basis).

To provide an approximating finite-dimensional space for the problem, we define the sub-
space HM = span{B{} and take the product space for the first-order problem to be HM =
HM x HM. The restriction of the infinite-dimensional system (2.8) to the space HM x HM
then yields

1 - — |-
/—_¢ftf‘5dw+/ VM ~V£dw:/ ~ gfdw
Q c? Q ac?
for £ in HM. The corresponding matrix system is
[ KN o J[dMw)] [ o KM T oM@
0 My LMy || -k 0

L .

[ KA 0] 'W(O)]_[W]

(2.14)

0 MY || M0 3"

where 9M(t) = [¢1(t), ¢2(2),- - -, da(t)]T denotes the M x | vector containing the approximate
state coefficients. The component matrices and vectors are given by

[A’TA;]“=/QVB,{,”-VBM1@,

[Mﬁ\of‘}[’k = a ;,lsBIJ»MFIde )
Gp(0)], = [ oBFds o15)
o], = /QV% - VBMdw = (6o, BM),

5], = [ ZorBF s = (61,B),

where the index ranges are k,£ = 1,---, M. We note that the presence of the matrix KX in
the ¥ component of (2.14) and mass matrix is due to the form of the V-inner product.

We point out that the Fourier-Galerkin technique leading to the matrix system (2.14) is quite
general in nature and can be used to approximate wave solutions in cases where the analytic
solutions described at the beginning of this section are unavailable or impractical to use. The
general techniques described here are also easily adapted to different boundary conditions and
more complex systems involving acoustic components. Test cases illustrating the basic method
are given in the following examples and the extension of these techniques to a more complex
coupled structural acoustic system is presented in Section 4.



2.1 Example 1
As a first test of this approximation method, we considered the forced wave equation

b1 = A+ gt r.8) L (r e t>0,
Vo -7=0 , (r@)el t>0,
¢(0,7,0) = $(0.7,8)=0 , {(r,8)eQ

on the circular domain Q of radius @ = 1. The true solution ¢(¢,r,0) = £*[cos(2rr)—1]?[sin(36)+
cos(#)] was used to generate the forcing function g, and the problem was then discretized to yield
the matrix system (2.14). The absolute and relative errors obtained by integrating this system
to time 7" = 1 and comparing with the known true solntion on a uniform mesh are recorded
in Table 1. The true solution at that time is depicted in Figure 1 while line plots comparing
the approximate and true solutions along the central line € = {(o,y): =1 < » < 1,y = 0} are
given i Figure 2.

The solution for this problem was chosen in a manner that allowed us to fix the Fourier
limit and examine the convergence as the Galerkin limit was increased. The rapid convergence
exhibited by the results in Table | is consistent with that expected from the radial Legendre
basis. A slight decrease in the convergence rate is noted when N = 15, and we believe that this
15 due to error in time discretization rather than spatial approximation (a standard fourth/fifth
order Runge-Kutta routine was used to integrate the system). In this and other examples
that we have examined, it can be noted that as long as the solution being approximated is
sufficiently smooth at the origin, the approximation method performs well and accurate results
can be obtained with a relatively small number of basis functions. For example, the plots in
Figure 2 demonstrate that while small oscillations near the origin are present in the approximate
solutions obtained with ¥ =3 and N = 6. they are gone with larger discretization limits and
if fact, the approximate solution obtained with N = 9 is graphically indistingnishable from
the true solution.  For less smooth functions (e.g.. functions that are only continuous and
differentiable at the origin), some loss of accuracy does occur, although, in applications this
has not been a factor since these types of discontinnities generally do not occur in the physical
systems whose dynamics we are simulating.

M N 2M |due — Gupypll Drrue —gbapp

”’.‘"!ru»”

3 3 H4 1.0067 - 0 A357 -0
3 6 96 d453 -0 1959 — 1
39 138 1269 — 2 ATI0 -3
3 12 180 RH67T — A155 -4
3 1> 222 A912 -4 2578 =5

Table 1. Absolute and relative errors when approximating the wave solution

ot r,0) = t*[cos(2mr) — 1]¥[sin(30) + cos(0))].
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Figure 1. True solution ¢(t,7,8) = t*[cos(2mr) — 1]*[sin(36) + cos(0)] at time T' = 1.
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2.2 Example 2

A second means of testing the accuracy of the mass and stiffness matrices in the system (2.14)
and hence checking the accuracy and convergence properties of the approximation method is
by discretizing the eigenvalue problem

AP+ =0 ., (r,0) €0,
Vo .7 =0 L (r0)el

(see (2.2)) which arises when separating variables in the homogeneous wave equation. As
discussed previously, the eigenvalues v,,,,, are determined by solving for the zeros of the nonlinear
system y%ﬂl = 0 where J,, is the m* Bessel function of the first kind. Several values obtained
with @ = | are summarized in Table 2 (see page 343 of [9] for details).

To compare these results with those obtained via the Fourier-Galerkin expansion, it is noted
that under approximation in weak form, the eigenvalne problem (2.2) yields the generalized
matrix eigenvalue problem

KM = 42 My oM (2.16)
with ¢? = @ = | in the mass and stiffness matrices M4 and K3, respectively (see (2.15) for the
definition of these matrices). The approximate eigenvalues obtained by solving (2.16) are sum-
marized in Tables 3 and 4 for the limit choices M = 6, N = 6 and M = 6, N = 12, respectively.
With the first choice of limits, it becomes difficult to distinguish the higher order eigenvalues
and these are omitted from the table. We first note that with M =6, N = 12, very accurate ap-
proximations are obtained with the largest relative error (4.4x107%) occurring when m = n = 6.
Moreover, we see that while the definition of the modified Fourier component 1 (see (2.12)),
which incorporates the analytic decay of the Laplacian near the origin, changes at m = 5, this
has not rediced the accuracy of the method. Hence this example further illustrates the efficiency

and acenracy of this approximation method for the wave equation on a circular domain.

ntm=0 m=1 m=2 m=3 m=4 m=>5 m=0
0 1.8412  3.0542  4.2012  5.3176  6.4156  7.5013
1] 38317 53314 6.7061  8.0152  9.2824 10.5199 11.7349
21 7.0156  8.5363  9.9695 11.3459 12.6819 13.9872 15.2682
31 10,1735 11.7060 13.1704 14.5858 15.9641 17.3128 1R8.6374
41 13.3237 14.8636 16.3475 17.7887 19.1960 ,20.5755 21.9317
51164706 18.0155 195129 20.9725 22,4010 23.8036 25.1839
61 19.6159 21.1644 22.6716 24.1449 255898 27.0103 28.4098

. gl lJn /
Table 2. Values of 4,,,, obtained from the Bessel condition &2 — (.
Youn 2E

n|l m=0 m=1 m=2 m=3 m=4 m=5 m=6

1.8412  3.0542 4.2012 53176 6.4156  7.5013
3.8317  H.3314 0 6.7061 80152 9.2824  10.5199 11.7349
7.0159  8AH378 99714 11.3472 12,6823 13.9874 15.2709
10.2668  11.7350 13.18358  14.6280 16.0386 17.4007 1X8.7540
13.7669 152709 17.2673 18.3866

W N — D

Table 3. Values of ~,,,, obtained with M = 6, N = 6 Fourier-Galerkin basis functions.
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n|lm=0 m=1 m=2 m=3 m=4 m=5 m=2~6
0 1.8412  3.0642 4.2012 5.3176 6.4156  7.5013
1] 3.8317 5.3314 6.7061 8.0152 9.2824 10.5199 11.7349
21 7.0156 8.5363 9.9695 11.3459 12.6819 13.9872 15.2682
3110.1735 11.7060 13.1704 14.5858 15.9641 17.3128 18.6374
4 113.3237 14.8636 16.3475 17.7888 19.1960 20.5755 21.9317
5116.4717 18.0159 19.5131 20.9730 22.4018 23.8043 25.1860
61 19.6250 21.1860 22.6929 24.1559 25.5937 27.0152 28.4223

Table 4. Values of 4,,, obtained with M = 6, N = 12 Fourier-Galerkin basis functions.

3 The Plate Equation

A second area in which one must commonly approximate the dynamics of PDE-based models
posed on circular domains occurs when numerically simulating structural dynamics. While the
assumption of small amplitude vibrations often leads to linear models, these models are often
sufficiently complex so as to warrant special numerical techniques to capture the physics of the
system. As a motivating example, we consider a thin circular plate having piezoceramic patches
bonded in pairs to its surface (see Figure 3). When a voltage is applied to the patches, stresses
are generated which can be used to invoke in-plane forces and/or bending moments in the
underlying structure [8]. In this manner, the patches can be used to control plate vibrations [2]
or acoustic sound pressure levels when the plate is an active component in a structural acoustic
system [3, 4, 5]. For the analysis which follows, we assume that the edge of the plate is clamped
since this quite closely approximates the condition found in several applications of interest.
We point out, however, that the techniques which follow are easily adapted to other essential
boundary conditions if warranted by the physical model.

Piezoceramic Patches

Figure 3. A thin circular plate with piezoeceramic patches bonded in pairs to its surface.
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For a thin circular plate of radius « having clamped edges, the strong form of the equations
modeling the transverse motion is

PM,  20M, 10M, 20°M, | 20M, 1 9M,
oz Yy v o trae Tron Twae 00
w(t,a,0) = ())“( ., 0) =0 (3.1)

ar

w(0,r.0) = wy(r,0) , w(0,7,0) =w(r,8)

pphwy +

where p, and A denote the density and thickness of the plate and w is the transverse displace-
ment. The general moments are given by

Mo = M, — (M)
Mo = Mo— (M)
Mg = My

where

M, = D(d‘!w vow v (‘)Zw> ‘ ( Pw v te v Pw )

oz e T ozt v ool TR oo

1w 1 §*w (')2w> (l Pw 1 Pw FPw )

My =ty L 0%w 19w 1
' (7 or Tz o TV | T S oot 2 amear T anzon

I 9w 1 ow I PFw 1 0%w
Me=D( -1){ ———— —— cp(l— ————
o = DI )(7 a0 v an) TN S raear 2 aeor
are the internal plate moments (including discontinnous changes in D, v and ¢p due to the
bonding of the patches to the plate - see [8]), and

(M,)ye = (M), Zx W) xi(r, 0)

are the applied moments generated by s pairs of patches. With £ denoting the Young’s modulus,
% and ¢p represent the Poisson ratio, flexural rigidity, and damping
coefficient for the plate/patch structure. Here x;(r, 8) denotes the characteristic function which
" patch and is 0 elsewhere. Moreover, u;() is the

the parameters v, D =

has a value of | in the region covered by the @
voltage into the ' patch and K; is a parameter which depends on the geometry, piezoceramic
material properties and piezoelectric strain constants (see [8] for details). We point out that the
piezoceramic material parameters K, 0 = 1,-- -, s as well as the plate parameters p,, D, ¢p and
v should be considered as unknown and in applications must be estimated using data fitting
techniques analogous to those discussed in [7]. The piecewise nature of the material parameters
and input moments is one motivation for approximating the problem in a weak or variational
form.

To motivate the development of a Fourier-Galerkin scheme for this problem, we proceed in
a manner analogous to that used in the last section and consider first a simplified version of
the problem where separation of variables can be employed. To this end. we analyze first the

equation
d*w

pph— Yz + DV =0. (3.3)
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which models the transverse motion of an undamped thin circular plate devoid of patclies and
having constant stiffness and density. Because the manner of solution is similar to that discussed
in the last section, we highlight only those details which are necessary for motivating the form
of the approximate solution for this problem.

As before, we separate the temporal and spatial variables, in this case taking w(f,7,0) =

T(t)W(r,0), to obtain

VAW = W
oW (3.4)
W(a,0) = %——(a,@) =0
-

92 . . hw? .
and 7" + w?T = 0,t > 0. The separation constant is 7* = 225 where w again denotes the
circular frequency. A second separation of variables then yields solutions of the form

‘/V(T) - A7n¢]1n(77.) + Bmlm(77') + (ym y;n(’)ﬂ") + Dm ]"7r1(77') (;5)

where J,, and Y,, are Bessel functions of the first and second kind and 1,,(z) = ¢7"J,,(22) and
Ko, = limy_ Z[1_(2) — 1,(2)]/ sin(pr) are modified Bessel functions of the first and second
kinds, respectively. We note that for fixed m and z — 0, these functions have the limiting

forms
LM m

]m(:) ~

~~/
ALT SN 2mgnl
2" (m — 1)! , 2" (m — 1)!
— Ko(z) ~ ———
Tz 2zm

(see [1]) which immediately shows that the Bessel function and modified Bessel function of the

(3.6)
)/m(z) ~ =

second kind grow unboundedly at the origin. Hence C,, and D,, are taken to be zero in order to
avoid infinite deflections and stresses at » = 0. Furthermore, the condition W(a,8) = 0 yields
the condition

LX)
A, = =B 3.7
where A = va. Finally, the boundary condition 3_1/( ,#) = 0 requires that A solve
1 (A dl (A
1@ ) ) (3.5)
dr dr

in order that (3.5) yields a nontrivial solution to (3.4). By solving (3.8), one obtains the eigen-
values A,.,, and by combining (3.5) and (3.7) with the Fourier coefficients, the eigenfunctions
or modes are found to be

/\mn r ']m (/\mn ) AT i f
lI}m " 0) = m - ]m S 3.9
(7 ) [J ( a ) ]m()‘mn) < a )] ¢ ( )

With suitable smoothness assumptions on the the initial conditions, it then can he shown that

the solution to (3.3) has the form

/\mn r ]m ( /\mn ) /\mn r imb .
t’ 7’0 Z E wmn [ m ( a ) ]m(/\m”) ]m ( @ )} € (‘310)

m=—oc n=1

where the coefficients w,,, () depend on the initial conditions. Again, we note that the motiva-
tion given here is formal and we refer the reader to any standard PDE tex for details concerning
this derivation.



Having motivated the general form of the analytic solution for a specific case of the plate
equation, we can now present a Fourier-Galerkin method for approximating plate dynamics in
the more general cases. As noted at the beginning of the section, the weak form of the system
equation (3.1) will be used to accommodate potentially discontinuous material parameters.
Moreover, the use of the weak form accommodates unbounded input operators (as is the case
when piezoceramic patches are used as control elements) as well as rednces the smoothness
requirements on the basis functions.

The state for the problem is taken to be w and the Hilbert space ff = L*([y) with the
energy inner product

(w,n)y :/ pphwidy
JTg

is used as the state space. We also define the Hilbert space of test functions V. = HZ(T) =

{vr € H¥ Do) : v(a,0) = ¢'(a,0) = 0} with the inner product

) | e);,> 1 0y 1 01 < l ()7,>
oy =AMy, — — My, = Mo, 2( =M. - - 2{ =My,
Cosihy = { M 503 +<r o)t “aaz ) T\ G RGP

where ¢y = 0 in the moments appearing in this definition and (F. () = [ FGdy with
dy = rdrdf. As detailed in [6], a weak or variational form of the equation describing the motion
of a damped thin circular plate having s pi('z()cm‘ami(‘ patch pairs is

27) 1 ()271 oy oy
/r pplowyaydy +/ M, ——dy +/ - '119 l’) + zMrg 02 + 27 598 20—0 dy

(3.11)

/ ZKHL a(r, 0)V27)d7+/ frdy
r

0 y=1
for all n € V. Again, the internal moments are given in (3.2).
To obtain an appropriate form for the approximate solution, we begin with the Fourier

expansion in f
M

“v\c’(t. r, 0) — Z l["'llz({q 7.)(‘1‘7H9 .

m=—M

As was the case when describing the wave approximation, we will use the complex Fourier
expansion while describing the method since it simplifies the notation. Due to the potential
presence of patches or otlier actuators on the plate, however, the method is more easily imple-
mented using the real (trigonometric) expansion (with 1)at‘(‘110s present, the complex expansion
leads to a complex system matrix which proves tronblesome when solving the Riccati equation
in the control problem). We have omitted details concerning the real expansions used 1 the
implementation since it is straightforward to interchange between the two expansions.

To determine an appropriate expression {or w,,(t,r), we first note that 1t must satisfy the

conditions

- (‘)‘ll‘(]
Wy(t,r)=0, m#0 ; — =0
ar
at 7 = 0 in order to guarantee uniqueness and differentiability (see the discussion about the

analogous requirement for the wave solution). In light of these requirements, an appropriate
expaunsion for w,, (t,r) 1s
N

-~ T ki
(1) = 3 ()P B (1)

n=1
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where B™(r) is the n'* modified cubic splme satisfying B]'*(a)= Eg;-m =0 with the condition

d—B('i‘"%@ = 0 being enforced when m = 0 (this latter condition guarantees differentiability at
the origin and implies that N™ = N + 1 when m # 0 and N” = N when m = 0, where N
denotes the number of modified cubic splines). The total number of plate basis functions is

N = (2M + 1)(N + 1) = 1. The inclusion of the weighting term il with

. 0 , m=90
h =
1, m#0
is motivated by the asymptotic behavior of the Bessel functions (see (3.6)) as r — 0. It also
serves to ensure the uniqueness of the solution at the origin. The Fourier coefficient in the weight

is truncated to control the conditioning of the mass and stiffness matrices (see examples in [6]).
To simplify notation, the approximate solution is written as

M N™
f r, 0 Z Z wmn |m|Bm t77l9 Z wk 7 0) (312)
m=-M n=1

where BY (r,0) = "™ B™(r)e'™?. A comparison with (3.10) indicates that, as was the case with
the wave approximation, the Bessel components of the analytic solution are essentially replaced
by approximating elements suitable for the problem under consideration. In the wave problem,
the approximate solution was expressed in terms of weighted Legendre polynomials whereas here
the radial basis is comprised of weighted cubic splines. In both cases, the weights were used to
incorporate the analytic solution behavior at the origin into the approximate solution, thus guar-
anteeing that it had the correct continuity and differentiability characteristics at that point.

To obtain a Correspoudmg matrix system, the A dimensional approximating subspace is
taken to be HY = span{B}} and the product space for the first-order system is HY x HV.
The restriction of the infinite-dimensional system (3.11) to the space HY x HY then yields the
matrix equation

KN 0o 1[ W¥N@) [ 0 Ky } WH (1) 0 » 0
. = . + N u(t) + -
L0 MN [ W@ Ky kY ]| WV BY FN (1)
Ky 0 [ M) _[glﬁ}
Lo MY || W0 g
where WX (t) = [wy (1), wa(t), -, wn(t)]T denotes the A7 x | vector containing the approximate

state coefficients. The Componeut matrices and vectors are given by

ng =Kp1+ Kp2+ Kps+ Kpa+ Kps
KN=mm+mﬂ+&ﬁ+mm+mm

/ Pyl By, B[T‘h )

[ (3.13)
ol - [ e ), <[
[

P
], :<wo,wf>v o], ),
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where

(K p1] _/ p|LBY  voBf | v 0?BY) 0°BY
Dilew = re | Or? r Or r? 06?2 a2 47

10BN 1 0°BY ua‘lB,{Y} aﬁd
—_ 7’

o2l = ./1“0 b ﬁ ar 3 06% * r or? ar

Koy = [ p[ L2 LRBE ) 2B
\D3jp g = ro _r” or rt 992 2 Jr2 082 Yo,
[ 1 A2 pAN 9BV 62N
[1\'[)4]“:2/ D(1 - v) ldek _id—‘BL d gy |
: Iy |72 0rd8 3 08 | 9rod
1 *BY  108)) 0BY
% =2/ Dl—v)|-—=k 4 Tk o
[KDsle s /[ ( ”)_ P 0r08 08 | o8

with the index ranges are &, ¢ = 1,---, . The matrices K. 1 — K5 are defined similarly with
the inclusion of the parameter ¢;) in the various integrals. Finally, we remind the reader that
pps D, v and epy are piecewise constant in these definitions due to the presence of the patches.

For application purpose, it useful to note that the matrix system for the plate can be written
as the Cauchy system

V() = ANV () + BVu(t) + GV (1)
y(0) =y

where y¥ () = WY (), WV ()] = [wi (1), -+, wn(t), in(t), - - ,wn(t)] denotes the 2A x 1 vector
containing the generalized Fourier coefficients for the approximate displacement and velocity.

(3.14)

In this form, finite-dimensional parameter estimation and control problems can be readily dis-
cussed.

3.1 Example 3

As an initial test of the Fourier-Galerkin approximation scheme, we considered the undamped
steady state problem
d*M, N 20M, 10M, n 20°M,g  20M., 1 O*M,
or? r Jr r or r orad  rt 06 rt 06?

= /(r,6)

with the moments given by (3.2). In these expressions, the Poisson ratio, flexural rigidity and
% and ¢p = 0, respectively. The plate radius
was taken to be ¢ = .6 and the true solution w(r,8) = (cos(2rr/a) — 1)sin(#) was used to

generate the forcing function

damping coefficient were taken to be v = %, D =

I .
f(r0) = = [3 + (—67r7'/a + 167r'3r3/(13) sin(27r/a)
"

+ (—3 + 127%r% Ja* + 167r47'4/a4) (‘os(27rr/a)] sin(@) .



The absolute and relative errors for this example are summarized in Table 5. By choosing a true
solution with a known Fourier coefficient, the Fourier limit could be fixed at M = 1 and the con-
vergence rate could be observed as the Galerkin limit N was increased. For sufficiently smooth
forcing functions, we would expect the method to exhibit O(h*) convergence as a result of the
cubic spline basis [18, 19]. To check this, asymptotic errors were calculated by dividing the pre-
vious relative errors by 16. Since the number of radial basis functions is doubled each time, this
provides a means of checking whether or not the expected convergence rate is being maintained.
By comparing the results in the 5 and 6 columns of the table, see that O(h*) convergence
is being exhibited by the method thus providing an initial test in the efficacy of the method.

M N size(AY) ||Wirue — Wappl| “ﬂﬁﬁ’.‘jﬁmﬂ Asym. Error

1 5 15 x 15 4362 — 2 2181 -2

1 10 30x30 1454 - 2 7269 -3 1363 -3
1 20 60x60 6146 — 4 3073 -4 4543 — 4
1 40 120x 120 6717 — 6 3358 -6 1921 -5

Table 5. Absolute and relative errors for approximate solutions for Example 1.

3.2 Example 4

A second means of testing the accuracy and efficiency of the approximation method is by dis-
cretizing the eigenvalue problem (3.4) and comparing the approximate eigenvalues and eigen-
functions with analytic values that have been calculated for a simplified structure. This also
provides a means of determining analytic values of the natural frequencies of a uniform plate
which can then be compared with values obtained numerically and experimentally for structures
involving plates to which patches have been bonded [2] and plates that have been incorporated
in structural acoustic systems (as described in Section 4).

For a uniform undamped plate to which no patches are bonded, approximation of the
eigenvalue problem (3.4) via the Fourier-Galerkin method described in this section yields the
generalized matrix eigenvalue problem

KNV = M9V (3.15)

with the mass and stiffness matrices MY and K¥ defined in (3.13). The plate dimensions
a = .2286m (9in), p, = 2700kg/m>, h = .00127m (.05in), and parameter choices £ =
7.1x10*" N/m? and v = .33 were used which then yields the flexural rigidity D = 13.6007 N - m.
We point out that these choices are consistent with the dimensions and parameters of an
experimental plate currently being used in the Acoustics Division, NASA Langley Research
Center so that the frequencies determined here could be compared with those obtained obtained
experimentally (again, see the application in the following section).

By noting ‘the relationship f = ,—};w where f is the frequency expressed in hertz and w is
the circular frequency, the natural frequencies of the fixed circular plate can be written as

1 (M [D
=5 () o

16



For the given dimensions and parameter values, several frequencies deriving from the Bessel
solutions A to the nonlinear equation (3.8), as reported on page 8 of [13], are given in Table 6.
Approximate frequencies obtained by solving the generalized matrix eigenvalue problem (3.15)
with the basis limits M = 6 and N = 24 are tabulated in Table 7. We point out that in these
tables, the Fourier number m can be interpreted as the number of nodal diameters while n is
the number of nodal circles, not including the boundary. In comparing the Bessel and Galerkin
results in the two tables, it can be seen that the Fourier-Galerkin provides accurate mass and
stiffness matrices which translates to accurate approximations to the natural frequencies for
the plate. With the basis limits used here, the largest relative error for the frequencies shown
here is 8.1 x 107% when m = 3,n = 6. Moreover, we see that while the definition of 7 in the
weighting term 7™ changes at m = 1, the method loses no accuracy at that point.

To qualitatively test the ability of the Fourier-Galerkin method to accurately approximate
the decay of the solution in neighborhoods of the origin for increasing m, we compared the
analytic eigenfunctions given by (3.9) with those obtained via the Fourier-Galerkin method
with M = 5 and N = 16. Representative results using the two techniques are plotted in
Figures 4 and 5 with additional examples demonstrating the 3-D behavior, corresponding 2-)
slices and error results given in [6]. Qualitatively, the shape of the eigenfunctions in the two
sets can be seen to be graphically identical and, by comparing the results for the (i = 5,n = 0)
mode, it can be seen that the approximation scheme is accurately capturing the behavior of the
solution near the origin. In combination with the eigenvalues results listed in the tables, this
demonstrates that the approximation method accurately captures the physics of the problem
throughout the circular domain with no loss of accuracy resulting at the origin, in spite of
the coordinate singularity. Moreover, as demonstrated by the results in the last example, the

,|7h|

expected convergence rates are also maintained through the use of the weight »

m=0 m=1 m=2 m=3 m=4 m=35 m==6

n
0} 61.96 128.95 211.56 309.58 422,56 550.38 692.75
1] 241.23  368.90 513.02 673.33 849.82 1042.07 1249.92
21 540.46 72834 932,93 1154.26 1392.14 1646.34 1916.70
3| 959.46  1207.39 147215 1753.95 2052.63 2367.90
41149820 1806.12 2131.29 2473.02

5[ 2156.69 2524.45 2909.31 3311.57

6 {2934.91 3362.52 3807.60 4269.79

Table 6. Natural frequencies deriving from the Bessel expansions (in hertz).

n|lm=0 m=1 m=2 m=3 m=4 m=5 m=6
0| 61.96 128.95 211.55  309.52 422,56 550.38 692.75
1] 241.23 368.96 513.04 673.40 849.83 1042.08 1249.93
21 54046  728.35 932.98 1154.31 1392.18 1646.40 1916.79
31 959.50 120741 1472.31 1754.16 2052.83 2368.17

4 | 1498.37 1806.28 2131.37 2473.57

91 2157.22 252517 2910.49 3313.05

6 | 2936.35 3364.46 3810.17 4273.26

Table 7. Natural frequencies obtained via the Fourier-Galerkin scheme with M = 6. N = 24.

17



/) "'/I/I,, X

0“"/ 1117,

“' ‘\\\\\\ RIS

',;f\v/////,/~ \\\
N I .“ ‘\\\\\\ o

.:37 /ot
S5 SN )
.:::.,;///, ‘\\\\\\“
BRLZEN
RIS
So%028, 856"
3

OIS/
‘:;..:«.’N

T.,Jl/ i
00 Wz s

h\\ A\\ .-.'. 3;"
M \\'\!ef".'. ,,;;
'['\ ) “v“'\\\\‘\t.‘v‘ ‘:I“‘ " 0‘
[ OSSO R \o,,,O\\\" "
l/m“,;‘.‘ S \ 5 30 0

Figure 5. The (0,1),(1,1),(2,2) and (5,0) modes obtained via the Fourier-Galerkin

with M =5 and N = 16.
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4 Application — Structural Acoustic Noise Control

In the previous two sections, Fourier-Galerkin methods for isolated acoustic and structural
systems have been developed and illustrated through a set of examples. In this section, a
structural acoustic application will be used to demonstrate the manner though which these
techniques can be combined to yield an effective approximation scheme for simulating the
dynamics of more complex systems. When modeling the experimental setup which motivates
this application, care was taken to include the full coupling between the structural dynamics
and the enclosed aconstic field, internal damping in the structure, and the effects of actnators
such as piezoceramic patches which are bonded to the structure. The full inchision of these
components leads to a model which accurately captures the physics of the system but is difficult
to approximate using standard modal techniques since modes for the coupled system (inclnding
coupling, damping and actuator effects) must themselves be approximated since they are not
known analytically. Using a Fourier-Galerkin technique, however, the approximate system can
be directly constructed with several of the components actually consisting of matrices from the
isolated aconstic and structural systems. In addition to illustrating the method for the specitic
setup deseribed here, this demonstrates the flexibility of the method for approximating the
dynamies for general structural acoustic systems having cirenlar or eylindrical geometries.

4.1 The Structural Acoustic System

The structural acoustic system desceribed here models an experimental setup currently being
used for validation experiments in the Acoustics Division, NASA Langley Rescarch Center, and
the geometry and physical specifications were chosen so as to be consistent with that apparatus.
Specifically, the experimental apparatus is modeled by a eylindrical domain © having length ¢
and radins « as pictured in Figure 6. At one end of the cylinder is a clamped flexible plate of
thickness A which is assumed to have Kelvin-Voigt damping. Bonded to the plate are sectorial
piezoceramic patches which are placed in pairs and excited out-of-phase so that a bending
moment is produced when voltage is appled. The patches and glue layer are assumed to have

thicknesses T and Ty, respectively.

o

Piezoceramic Patches

Q r

WG e

(a) (b)

Figure 6. (a) The cylindrical acoustic cavity: (b) The circular plate with patches.
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As discussed in [3, 4], an appropriate linearized variational (energy) form of the coupled
system equations modeling this setup 1s

/p—§¢ttZdw+/pfv¢-de+/gZdw (4.1a)

Qc Q Q
2 2.,
+/ pphw,tnd‘y+/ M, 7]d +/ —Mg— Iy + LMTQ((;():](h (4.1b)
0ty on

2/ =M, dy — = Mg dy 4.1

" / orae”” /ro 98 (1.15)

+ [ oy (em— wid) dy (4.10)

To
/ ZKB (t)xi(r 9)V271d7+/ fndy (4.1d)

0 =1
for all appropriate test functions € and n (this will be clarified below). The differentials here
are dw = rdrdfdz and dy = rdrdf with the overbars again denoting complex conjugation.
We now counsider the components of the equations and compare with those found previously.
Throughout this section, the subscripts p and ¢ will be used to denote plate and wave (cavity)
components, respectively.

Acoustic: With ¢ € L2(Q) again denoting the acoustic velocity potential, the wave dynamics
are contained in (4.1a) where the test functions ¢ are elements in /{'(Q) (see Section 2
for details concerning the Hilbert spaces for this problem). When approximating the
dynamics of the system, the 2-D basis described in Section 2 is tensored with an axial
Legendre basis to yield the approximate solution

P, M. /VP m

(f) f., 710 Z Z Z @pmn( ) imf |m|]_)p m( ,)Pp(:)

p=0m=—M, n=0
p+[m|+n#0

where again,

m , ml=0,---.5
m =

5 , ml=6,---, M,
and
Pi(ry-1/3 , p=m=0,n=1 Ne+1 . p+iml#0
Pp.m( ) — / : Nzw,m —
P.(7) , otherwise N. ., p=m=10

Here P, (r) and P,(z) are the n'" and p** Legendre polynomials which have been mapped to
the intervals (0, a) and (0, £), respectively. We remind the reader that the term Py (r)—1/3
when p = m = 0,n = | results from enforcing the condition fy ¢M(¢,r,6,2)dw = 0 so as
|5

to guarantee that the functions are suitable as a basis for the quotient space while »
incorporates the analytic decay at the origin with m truncated to control conditioning.
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Structural: Equation (4.1b) contains the internal plate dynamics while the external contribu-
tions due to the perturbing noise source [ and the excitation of the patches are contained
i (4.1d) (compare with (3.11) in the last section). As was the case when the isolated
plate was considered, w € L*(Ty) denotes the transverse displacement and the test fune-
tions 5 are taken in HZ(Ig). When discretizing the system, the plate ('Hs‘pla(‘('m(‘m is
approximated by w™(1,r,8) as defined in (3.12) with M, and N, used here to denote the
Fourier and spline limits, respectively.

Coupling: The coupling between the plate dynamics and interior acoustic field 1s incorporated
by including the backpressure pro,(t,r,0) from the interior field as a force on the plate
and assuming the continuity of veloeity condition

)
04 0.0) = —wi(t,r.0)

)z
at the surface of the plate (this latter condition is often designated the momentum con-
dition in the literature). In the weak form of the system equations, these conditions are
manifested as the first and second terms, respectively, in (4.1¢).

With the components thus described, we are now in a position to form the matrix system
which results when the system dynamics are approximated. The N = (2M,+1)(N,+1)—1 and
M= (2M.+ )N+ 1) P.+ 1) — 1| dimensional approximating plate and cavity subspaces are

taken to be H;)\ = span{ B¥ Y and HM = span{ BM}M, | respectively, where BY and BM are
the ¢ plate and cavity bases described above. Defining P = A" 4+ M, the approximating state
space is H? = HM x HN and the product space for the first order system is HF = HT x 7.

The restriction of the infinite-dimensional system (4.1) to HZ x H” then yields the matrix

system

MPyP (1) = APyP () + BPu(t) + FT (1)

(1.2)
MPyP(0) = 1/(7,) .

Here yP(£) = [P (1), WP (1), 97 (1), WF(1)]T, with the components 97 (1) = [67 (), -, oy ()]T
and V\/T’( ) = [m?(f,), o wh (D)7, denotes the approximate state vector coe fh( ients while
w(t) = Jug(t), -, u‘s(f)]T contains the s patch input variables. The system matrices and vectors
are
] [ ]
[\10~ ‘ I\ rfz
N A
o KN e | Ky
MM —KM | — A%
VA A AP A
i MA i Y| A% KN
and

B =[0 0 0 B;}‘"]T . FPiy=lo 0o My M) ]T,

We now separate the matrices into those containing acoustic, structural and coupling compo-
nents to better illustrate the connections with those developed for the isolated acoustic and

structural problems in the previous sections.



Structural: The A/ x A’ component matrices MY, K§ and K;‘Ig are the mass, stiffness and
damping matrices which arise when solving the damped plate equation with fixed bound-
ary conditions while the A x 1 vectors Bﬁv and ﬁ'{‘[(!) are the corresponding control and
forcing terms (see (3.13) for the various definitions).

Acoustic: The M x M matrices M4 and KA are the mass and stiffness matrices which
arise when solving the uncoupled wave equation with Neumann boundary conditions on
a cylindrical domain. As a results of the tensor properties of the 3-D basis, they can be

succinctly defined as the tensor products

MM = MM o MY,

KM = MM o KM 4 KMo MY

where MA and K74 are given in (2.15) and the (P, + 1) x (F. 4+ 1) matrices M. and K.
are defined by

73 ¢
M), = [ PP K, = [ PP

The construction of M%! and K7L is completed by updating the row and column affected
by the alterations used to guarantee that the functions are a basis for the quotient space.
Finally, G'(¢) is a forcing term which incorporates any acoustic sources (see (2.15)).

Coupling: The contributions from the coupling terms are contained in the matrices
P _ N M P _ A MTON
{An]u = =Ps /ro B Bidy [Ac;z],)_k =Ps /ro Bj; B{f dy

where BY and BM are plate and acoustic basis functions, respectively, and the index

ranges are k,{ =1,--- Mand i,p=1,--- N,

Initial Conditions: The vector 57 = [¢gM, g™, ¢V, g7 (see (2.15) and (3.13)) contains the
Yo g1 592 9 92
projections of the initial values into the approximating finite dimensional subspaces.

We point out that several of the component matrices are identical to those defined when
considering the isolated acoustic and structural systems while others can be efficiently con-
structed from those components through basic operations such as tensor products. In fact,
only the coupling matrices A7 and A%, containing quadrature values for the plate and acoustic
bases must be constructed solely for this problem. This potential for decomposition into exist-
ing structural, acoustic and coupling matrices also exists for more complex structural acoustic
systems when a Fourier-Galerkin approximation scheme is used and is a further advantage of
the method in coupled problems involving linear or weakly nonlinear components.

4.2 Example 5

As a first test demonstrating the convergence of the method for the fully coupled system, we
considered the problem (4.1) with the dimensions ¢ = .6,h = .00127,¢ = 1.1 and parameter
choices py = 1.21,¢ = 343, p, = 2700, v = .33, D = Eh . — 13.6007 and ¢p = .00011222 (the

12(1-12)
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effects of the patches are neglected in this example but will be incorporated in Example 6).

The true solutions
w(r,8) = t*(cos(2mrfa) — 1)sin @
o(tr,0,2) = —Zt¥(cos(2nr/a) — 1)z(f — z)?*sind

were used to generate forcing functions f and ¢ on the plate and in the cavity, respectively (see
the convergence tests in Sections 2 and 3). The resulting matrix system (4.2) was then integrated
to time T = .1 and the absolute and relative errors in the plate displacement, potential and
pressure at that time were caleulated. The results for four sets of Galerkin limits are reported
in Tables 8. 9 and 10. In these tables, the subscripts p and ¢ in the tables again refer to the
plate and wave (cavity) indices, respectively, and the measurements were made on a 30 x 30
grid on the plate and a 10 x 10 X 10 grid in the cavity. As demonstrated by these results, the
method for the fully coupled system is exhibiting a convergence rate similar to that noted when
the individual components were tested. Moreover, sufficient accuracy is obtained with tractable
approximation method is used to

matrix sizes so that physical details are captured when the
simulate system dynamics and develop feedback control techniques. Finally, we point out that
in spite of the fact that we are approximating nonaxisymmetric solutions, the computations for

this example could be performed on a Sparcl0-class workstation.

M, N, M. No P size(AT) (v = wapll e oy
I 5 1 2 2 B86x86 1366 — 5 2207 — 2
R S B S B b B £, 4294 -5 2171 =2
I 10 1 6 6 356x356 2674 — 6 1352 -3
I 20 1 R % 608x608 1588 — 7 8030 — 5

Table 8. Absolute and Relative Errors in Plate Displacement at T=".1

M, N, M. No Po size(AT) |6true = dappll el
I 5 1 2 2 86x86 3132 -2 3569 — 0
[ 5 1 4 4 I82x182  .1545-3 1760 — 1
I 10 1 6 6 356x356  .9554-5. 1089 -2
I 20 1 8 8 608x608 2251 -6 2565 — 4

Table 9. Absolute and Relative Errors in Potential at T = .1.

M, N, M. No P size(AP) {Ipoue = Paml L
1 5 1 2 2 86 X 86 7h73 -1 3566 — 0
1 5 | 4 1 182 x 182 3739 — 2 761 =1
1 10 1 6 6 356 x 356 2312 -3 089 — 2
1 20 1 el % 608 x 608 54H3 — 5 2568 — 4
Table 10. Absolute and Relative Frrors in Pressure at T = .1
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4.3 Example 6

In this final example, the numerical techniques just described are used to simulate the system
dynamies of the experimental structure described at the beginning of this section. A common
technique for determining the dynamics and natural frequencies of coupled structural acoustic
systems is to subject the structure to an impulse (through an impact hammer hit or a voltage
spike to the patch) and measure the resulting time and frequency responses. By exciting the
system in this manner, a wide spectrum of frequencies can be excited and various system
properties determined. Because there is no acoustic source inside the cavity, ¢ = 0 in (4.1a).

The hammer impact can be numerically simulated by a triangular force f to a point on the
plate while the voltage spike can be approximated by a short duration triangular voltage u; in
both cases, the approximate system response is calculated via (4.2).

In order to remain consistent with the experimental setup being modeled, the length and
radius of the cavity were taken to be 1.0668 m (42") and a = 2286 m (9"), respectively with a
plate having thickness A = .00127 m (.05”) mounted at one end. A pair of circular piezoceramic
patches having thickness 7' = .0001778 m (.007") and radius rad = .01905 m (.75") were located
at the center of the plate (see Figure 7). The physical parameters that were chosen for the
structure and acoustic cavity are summarized in Table 11. The flexural rigidity D for the plate
was obtained using the “handbook” value £ = 7.1 x 0" N/m?* for the Young's modulus of
aluminum. The remaining choices are comparable to values found when estimating parameters
for the isolated plate with a similar patch configuration [2]. We re-emphasize that in general,
these parameters must be determined through parameter estimation techniques in order for
the PDE model to fit the actual physical system under consideration. As demonstrated in (2],
the Fourier-Galerkin scheme presented here performed well when incorporated in a fit-to-data
routine for determining physical plate parameters thus yielding a model which could he used
for implementing model-based feedback control techniques.

a = .2286

Figure 7. The acoustic cavity with a pair of centered circular patches, the impact point

I1 = (.13,%) and the observation points pl = (.125, A1) and el = (1125, 4—; .05).
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Structure Acoustic Cavity
Parameter Plate  Plate + Pzt || Parameter | Cavity
pp - Thickness (kg/m?*) | 3.429 3.489 py (kg/m?*) | 1.21
D(N-m) 13.601 13.901
cn (N -m - see) 1.150-4 2.250-4
v 33 32
KB (N/V) 0267

¢ (m/sec) 343

Table 11. Physical Parameters for the structure and acoustic cavity.

Voltage Spike to a Centered Patch Pair — Axisymmetric Response

As a first example demonstrating the response of the system model to a simulated impact,
we applied a triangular voltage spike u(t) as input to the patches and integrated the matrix
system to obtain a time history of the response. Because the patches are centered on the
plate, the response was uniform in @ which implied that the Fourier limits could be taken to
bhe M, = M. = 0. The remaining limits were taken to be N, = 12,N, = 9 and P. = 9
(these values resolve the range of frequencies being examined). A time history of the system
response throughout the interval [0,.5] was calenlated at the plate and cavity points pl =
(.125,48) and el = (125, AZ_.05) (see Figure 7). and the resulting trajectories and {requencies
are plotted in Figure 8. This temporal interval was chosen since it was sufficiently long so as
to demonstrate the system dynamics but short enough so that the higher frequency responses
were not completely lost. The off-center observation points were chosen to demonstrate the
senerality of the method and provide a basis for comparison with the nonaxisymmetric resilts
in the next example. Finally, the system frequencies are summarized in Table 12 with the
notation p and ¢ being used to designate those frequencies which are observed at the plate
point pl and cavity point ¢l, respectively.

To determine the effects of coupling, internal plate damping, and the presence of the patches
on the system, it is illustrative to compare the system results listed in Table 12 with those of
the isolated components. In Section 3, the natural frequencies for an isolated and undamped
plate were obtained. The natural frequencies for the isolated wave equation in a cylindrical
cavity can be determined by separating variables in the 3-D wave equation having Neumann
boundary couditions. This leads to a 3-D Helmholz equation which, after an analysis similar
to that presented in Section 2, yields the natural frequencies

2

i | pr Xonn
.Imn]l = g(l (7) + (1 (13)
where p = 1,2.--- . m=0,1,2,--« . n=0,1.2,-- and A, = v,,a are zeros of (2.6) (see

[3. 6, 9] for details). For the previously mentioned dimensions, the frequencies of axisymmetric
modes (m = 0) are listed along with those for the isolated and undamped plate in Table 13
(see Tables 2 and 6 for a compilation of the zeros 4, and natural frequencies for the isolated
plate, respectively).
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By comparing the values for the individual plate and cavity in Table 13, with the system
harmonics in Table 12, it can be seen that although the frequencies agree guite closely, there
are slight differences due to the fact that the system (4.1) involves not only coupling between
the plate and cavity but also includes damping in the plate. Specifically, the system frequen-
cies associated with strong plate responses tend to be slightly less than those of the uncoupled
and undamped plate while those system frequencies associated with strong acoustic responses
are slightly higher than the natural acoustic frequencies of an isolated hardwalled cavity hav-
ing these dimensions. Hence, through the Fourier-Galerkin method, physical characteristics
about the system are determined and differences between the coupled system response which
includes damping and the isolated, undamped components are illustrated. This latter obser-
vation also indicates the difficulties which would be encountered if one were to attempt to
simulated the coupled system dynamics using modes for the isolated systems.

Natural System Frequencies
pc] 59 M pe 164 915
p | 240 | p,e | 324 il ¢ | 929
pye | 337 ||| pac | 483 |} ¢ | 971
¢ | 645
c | 807

Table 12. System frequencies obtained with M, = O,N, = 12, M. = 0, N, = 9 and P. = Y
basis functions; p — frequencies observed at the plate point pl = (\125,47/3),
¢ — frequencies observed at the cavity point ¢l = (.125,47/3,.05). System freq-
uencies can be compared with the ordered frequencies of the isolated and nndamped
plate and cavity given in Table 13.

Plate ( fi,...) Wave ( finp)

(0,0) | 62 (0,0,1) | 161 | (0,1,0) |{ 915
(0,1) 1 241 (0,0,2) | 322 || (0,1,1) | 929
(0,2) | 540 (0,0,3) | 482 11 (0,1,2) | 970
(0,3) | 959 ||| (0,0,4) | 643

(0,0,5) | 804
(0,0,6) | 965

Table 13. Axisymmetric natural frequencies for the isolated and undamped plate and cavity
(in hertz).

26



o7 Plate Displacement at (125 .4pi/3) c108 Amplitude Spectrum of Displacement at { 125 4pi/3)

25 T T T T T T 35 T
!
5
| 1 1
15
I 25F
= @
2
g 05 4 g
@ | A
T 2
KN ] 13
3 <5+ 4
S
<05
e
K J
Q5 4
15 4
[ 005 c1 015 02 0.25 03 0135 04 0.45 05 Q 100 200 300 400 500 600 700 800 |00 1000
Time {sec) Hertz
Acoustic Pressure at { 125 4pi3. 05) Amplitude Spectrum of Acoustic Pressure at {.125.4p/3. 05)
03 T T T T T T T T 0.025 T T v v . v y v y
;
02
0.02
o~
<
E o 0015} 1
z kel
Y £
3 g
@ <
a 0.01
b
02k 0.005
‘ J
ol R LA . —
0 005 01 015 02 025 03 035 04 045 OS5 [} 100 200 300 400 500 600 700 800 900 1000
Timse (s8¢} Hertz

Figure 8. The plate and pressure responses to a voltage spike.

Noncentered Hammer Impact — Non-axisymmetric Response

As indicated previously, a second means of exciting the system is through a hammer impact
which can be modeled by a short triangular input force. To demonstrate the approxima-
tion of general nonaxisymmetric system dynamics, this force impulse was applied at the point
I1 = (.130,%), and a time history of the system response for the time interval [0,.5] was cal-
culated at the plate and cavity points pl = (125, 4—3”) and ¢l = (.125, 5431, 05), respectively (see
Figure 7). The resulting aconstic pressure and plate acceleration are plotted along with the cor-
responding frequency responses in Figure 9 (the plate acceleration models data that would be
experimentally obtained with an accelerometer, [2], and more clearly demonstrates the higher
frequencies than does the plate displacement). To resolve the frequencies below 1000 hertz,
the basis limits were taken to be M, = 4, N, = 12, M. =2, N. =9 and P. = 9 which yielded
1230 coeflicients in the system (4.2). As demonstrated by this choice of limits, the number of
Fourier coefficients in the plate and wave expansions can be chosen to differ in order to rednce
system sizes although care must be taken when doing so since the system response contains
contributions from both the plate and wave components.

The system frequencies are summarized in Table 14 where again, the notation p and ¢ are
nsed to designate those frequencies which are observed at the plate and cavity point pl and cl,
respectively. For comparison, corresponding natural frequencies for an isolated and undamped
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plate (see Table 6) and an isolated acoustic cavity (see (4.3)) are compiled in Table 15. By
comparing the results in these table, it can be noted that six system modes corresponding to
those of the isolated plate are excited with four of these responses being observed at both the
plate and cavity points (we emphasize that because these are truly system modes, the remaining
frequencies of 240 hertz and 422 hertz can also be measured in the cavity at various points; the
response is simply weak at the point ¢l). Similarly, nineteen system modes corresponding to
those of the isolated acoustic cavity are excited by the nonsymmetric impact with the strongest
response in the asymmetric system mode having a frequency of 460 hertz (this corresponds to
the (1,0,0) mode for the isolated cavity). As was noted in the previous example demonstrating
the symmetric excitation, the system frequencies associated with strong plate responses tend
to be slightly less than those of the uncoupled and undamped plate while those system fre-
quencies associated with strong acoustic responses are slightly higher than the natural acoustic
frequencies of an isolated hardwalled cavity having commensurate dimensions. We reiterate
that these differences are due to the coupling between the plate and cavity as well as damping
in the plate. This again provides motivation for considering a general Fourier-Galerkin method
of the type described here when approximating the dynamics of a complex coupled system.
The effect of coupling and damping are implicitly included in this approach while they must he
explicitly (and occasionally artificially) enforced when employing modal approaches using the
eigenfunctions of the isolated components.

Natural Frequencies of the Coupled Structural Acoustic System

p.c | 99 || p,c | 209 C 164 c | 929 c 915

p | 240 p,c | 324 ¢ | 971 C 730

p.c | 483 | p,c | 440 ) ¢ 748

c | 645 || p,c | 470 || ¢ 798

p,c | 127 C 8O7 || p,c | D46 || p,c 875

p,e | 3654 p | 422 p.c| 653§ ¢ 971
¢ | 915 ¢ | 781

Table 14. System frequencies obtained with M, = 4, N, = 12, M, = 2,N. = 9 and P. = 9
basis functions; p - frequencies observed at the plate point pl = (.125,47/3),
¢ ~ frequencies observed at the cavity poiut ¢l = (.125.47/3,.05). System fre-
quencies can be compared with the ordered frequencies of the isolated and un-
damped plate and cavity given in Table 15

Plate (fmn) Wave (fmnp)
(0,0) | 62 (2,0) | 212 (0,0,1) | 161 || (0,1,1) ] 929 || (1,0,5) | 916
0,) | 241 | (2,1) | 513 || (0,0,2) | 322 || (0,1,2) | 970 || (2,0.0) | 720
(0,2) | 540 || (2,1) | 933 || (0,0.3) | 482 || (1.0.0) | 439 || (2.0.1) | 750
(0,3) | 959 || (3,0) | 310 || (0,0.4) | 643 || (1,0,1) | 468 || (2.0.2) | 797
(1,0) | 129 || (3,1) | 673 ||| (0,0,5) | 804 {| (1,0,2) | 545 || (2,0,3) | 874
(1,1) ] 369 || (4,0) | 423 il (0,0,6) | 965 || (1,0, 3) 1653 1 (2,04) | 972
(1,2) | 728 (4.1) | 850 ||| (0,1.0) { 915 || (1,0,4){ 779

Table 15. Nonaxisymmetric natural frequencies for the isolated and undamped plate and
cavity (in hertz).
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Figure 9. The plate and pressure responses to an impact at (L 13.7/2).

5 Concluding Remarks and Control Applications

In this paper. a Galerkin method for approximating the dynamies of linear or weakly nonlinear
systems in circular geometries is presented. While the method is presented for linear acoustice,
structural and structural acoustic problems. the techniques are sufficiently general so as to be
applicable in a large varicty of applications involving the approximation of linear or weakly
nonhinear operators on cirenlar domains.

To take advantage of periodicity, Fourier expansions are first used to approximate the tan-
ecential behavior of the sohttion. The crux of the method then involves the construction of
radial basis fiunctions by combining traditional approximating functions (finite elements, piece-
wise splines, speetral polynomials) with terms of the form #70 where 1 is a traneated Fourier
cocllicient and the coordinate singularity is assumed to be at the origin. This latter termi incor-
porates the decay properties of the Bessel or analytic solution near the origin and is inclnded
so as to guarantee that the approximate solation is unigne and differentiable at the coordi-
nate singularitv. The truncation of the Fourier coeflicient provides a means of controlling the
conditioning of the resulting matrix system.

As demonstrated by several mumerical examples, the resulting Fourier-Galerkin technique

is accurate, eflicient and sufliciently flexible so as to be casilv extended to complex coupled
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systems. By varying the choice of radial basis functions, the method can be tailored to a
variety of applications and boundary conditions while the inclusion of the decay component p!
guarantees that accuracy is maintained throughout the entire circular domain for sufficiently
smooth system inputs. Hence the Legendre polynomials and modified eubie splines, used 1n
this presentation to approximate acoustic and structural dynamics, can easily be replaced by
other spectral functions, splines or finite elements as warranted by the situation.

A final advantage of the method arises when the Fourier-Galerkin techniques are nsed to
compute feedback gains in optimal control problems. As discussed in [5], where the method was
incorporated in a control scheme for reducing noise in a cylindrical coupled structural acoustic
system, the optimal control problem for reducing a periodically driven state = in the state space
H can be posed under approximation as that of determining a suitable u in a control space U
which minimizes

g o |
I (u) = 5/0 LQP =P (). 2 (D) + (B0, u())ur} di (5.1)

subject to 2% satisfying the matrix system of dimension P which results when the equations
modeling the system dynamics are discretized. Here 7 is the period and Q% and R? are matrices
which can be used to weight various components of the approximate state and control. As noted
in [5], a suitable choice for Q, when an energy inner product is associated with the state space
H. is a diagonal multiple of the mass matrix M7 which results when a Galerkin method is used
to discretize the weak form of the system equations. Since the mass matrix constructed in this
manner is the identity with respect to the energy inner product, the choice QF = DMP. D a
diagonal weighting matrix, in (5.1) minimizes a weighted measure of the state energy. Hence a
Fourier-Galerkin method of the type described here can also be advantageous when calculating
feedback gains for experimental and numerical implementation of optimal control techniques
to problems posed on circular geometries.

ACKNOWLEDGEMENTS:

The author expresses sincere appreciation to H.'T. Banks, North Carolina State University,
D. Gottlieb, Brown University, R.J. Silcox, Acoustics Division, NASA Langley Research Center
and Yun Wang, Center for Research in Scientific Compnting, North Carolina State University,
for input regarding the modeling, approximation and implementation techniques used in this

paper.

References

[1] M. Abramowitz and [.A. Stegan, Editors, Handbook of Mathematical Functions with For-
mulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1972,

[2] H.T. Banks, D.E. Brown. V. Metcalf, R.J. Silcox, R.C. Smith and Y. Wang, “A PDE-
Based Methodology for Modeling, Parameter Estimation and Feedback Control in Strue-
tural and Structural Acoustic Systems,” to appear in the Proceedings of the 199/ North
American Conference on Smart Structures and Materials, Orlando, FL.

30



(3] TLT. Banks, R.J. Silcox and R.C'. Smith, *Numerical Simulations of a Conpled 3-1) Strue-

&l

[13]

[19]

tural Acoustics System.” Proccedings of the Second Conference on Recent Advances in
Active Control of Sound and Vibration, Blacksburg, VA, pp. 85-97. 1993.

H.T. Banks and R.C. Smith. “Modeling and Approximation of a Coupled 3-1) Strue-
tural Aconsties Problem.” Computation and Conirol 111, Proceedings of the Third Boze-
man Conference, Bozeman, MT. 19920 Progress in Systems and Control Theory, Vol. 15,
Birkhauser Boston, Tue., pp. 29-48. 1993,

T Banks and R.C. Smith. “Noise Control in a 3-D Structural Acoustic Systen: Nu-
merical Simulations,” to appear in the Proc. of the Second International Conference on
Intelhgent Materials, Williamsburg, VA, 1994,

H.T. Banks and R.C'. Smith, “The Modeling and Approximation of a Structural Aconstics
Problem in a Hard-Walled Cylindrical Domain,™ to appear as a Center for Research in
scientific Compntation Technical Report.

HLT. Banks and R.C.Smith, “Parameter Estimation in a Structural Aconstic System with
I'nlly Nonlinear Coupling Conditions,” submitted to fnverse Problems.
J prng

ILT. Banks, R.CUSmith and Y. Wang, “Modeling Aspects for Piczoceramic Pateh Activa-
tion of Shells, Plates and Beams,” Center for Research in Scientific Computation Technical
Report, CRSC-TRY92-120 N CL State Unive, Quarterly of Applicd Mathematios, 1o appear.

R.D. Blevius, Formulas For Natural Frequeney and Mode Shape, Van Nostrand Reinhold
Company, New York, 1979,

S. Bounaoudia and P.S. Marcus. “Fast and Accurate Spectral Treatment of Coordinate
Singnlarities,” Journal of Computational Physies, 96, 217-223. 1991.

C. Canmto, MUY Hnssaini, AL Quarteroni and T.A. Zang, Spectral Methods in Fluid Dy-
namics, Springer-Verlag, New York, 1988,

D. Gotthieb and S.AL Orvszag, Numerical Analysis of Speetral Methods: Theory and Appli-
cations. SIAM, Philadelphia, 1977,

AW, Leissa, Vibration of Plates, NASA SP-160, \“\“yii:\‘}]illlgt()ll. D.C, 196Y.
P.M. Morse and KUl Ingard, Theorctical Acoustics, McGraw-Hill, New York, 1968.
S.AL Orszag, “Fourier Series on Spheres,” Monthly Weather Review, 102, 56-75, 1974.

S AL Orszag and AT Patera, “Secondary Instability of Wall-Bounded Shear Flows.”
Jouwrnal of Fluid Mechanies, 128, 347-385, 1983.

AT, Patera and S.AL Orszag. “Finite-Amplitude Stability of Axisymmetric Pipe Flow,”
Jowrnal of Fluid Mechanies, 112, 467-474, 1931

P.ML Prenter, Spline and Variational Methods, Wiley-Interscience, New York, 1975.

ML Schaltz, Spline Analysis. Prentice-lall, Englewood Clifls NJ. 1973,

31









Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average | hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
cotlection of information, including suggestions for reducing this burden, 1o Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jeflerson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY(Leave blank) } 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
May 1994 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
A GALERKIN METHOD FOR LINEAR PDE SYSTEMS
IN CIRCULAR GEOMETRIES WITH STRUCTURAL ACOUSTIC O NASI-19480
APPLICATIONS WL 505-90-52-01

6. AUTHOR(S)
R.C. Smith

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Institute for Computer Applications in Science REPORT NUMBER
and Engineering e
. . [ICASE Report No. 94-40
Mail Stop 132C, NASA Langley Research Center cport o
Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
National Aeronautics and Space Administration AGENCY REFORT NUMBER
Langley Research Center NASA CR-194925
Hampton, VA 23681-0001 [CASE Report No. 94-40

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card
Final Report
Submitted to SIAM Journal on Scientific Computing

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. OISTRIBUTION CODE

Unclassified— Unlimited
Subject Category 64, 66

13. ABSTRACT (Maximum 200 words)

A Galerkin method for systems of PDE’s in circular geometries is presented with motivating problems being drawn
from structural, acoustic and structural acoustic applications. Depending upon the application under consideration,
piecewise splines or Legendre polynomials are used when approximating the system dynamics with modifications
included to incorporate the analytic solution decay near the coordinate singularity. This provides an efficient
method which retains its accuracy throughout the circular domain without degradation at the singularity. Because
the problems under consideration are linear or weakly nonlinear with constant or piecewise constant cocfficients,
transform methods for the problems are not investigated. While the specific method is developed for the 2-D
wave equations on a circular domain and the equation of transverse motion for a thin circular plate, examples
demonstrating the extension of the techniques to a fully coupled structural acoustic system are used to illustrate the
flexibility of the mcthod when approximating the dynamics of more complex systems.

14, SUBJECT TERMS 15. NUMBER OF PAGES
Galerkin method, PDE’s in circular geometries, structural acoustics 33
16. PRICE CODE
A03
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION] 20. LIMITATION
OF REPORT OF THIS PAGE Of ABSTRACT OF ABSTRACT
Unclassified Unclassified
‘NSN 7540-01-280-5500 Standard Form 298(Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102



